Determinant Intention to Adopt AI-Powered Robo Advisors
DOI:
https://doi.org/10.62710/vwdp4002Keywords:
AI-powered robo advisor, technology adoption, perceived financial benefit, perceived risk, social influence, age moderation, Indonesia fintechAbstract
Fintech in Indonesia are increasingly becoming popular, but penetration in the society is still minimal especially in investment context. This paper examines the possible drivers toward intention to adopt of AI-powered robo advisor through a modified VAM model with attitude toward using and age as moderating factors. Survey data were collected from Generation Z and millennial investors and analyzed using SEM-PLS. Our analysis shows that potential financial benefits gained from AI-powered robo advisors drives positive attitude and intention to adopt, while risk associated with AI-powered robo advisor demotivate users to adopt it. External social influences also positively impact the adoption process, demonstrating the importance of social validation in Indonesia's communal culture. Attitude toward using shows a significant performance in explaining intention to adopt AI-powered robo advisor. Moderation analysis shows that age strengthens the influence of perceived financial benefits on intention to adopt (stronger in millennials),and weakens the influence of social influence (stronger in Gen Z). These results provide theoretical and practical contributions in designing age-based marketing strategies and improving financial literacy. Future research is recommended to reach a wider demographic and conduct longitudinal studies as this technology develops
Downloads
References
Abozandah, T. A. (2020). Age and Gender Attitude toward Using Mobile Applications in Learning English Vocabulary. International Journal of Arts Humanities and Social Sciences Studies, 5(9), 100–101. https://www.ijahss.com/Paper/05092020/1179451247.pdf
Adji, Y. B., Karmawan, I. G. M., & Lusianah, N. (2024). Analysis Of The Robo-Advisor Investment Applications on Investor Satisfaction Using Modified Unified Theory Of Acceptance And Use Of Technology (UTAUT). IEEE, 1–6. Https://Doi.Org/10.1109/Infoteh60418.2024.10495963
Akinwale, Y. O., & Kyari, A. K. (2020). Factors influencing attitudes and intention to adopt financial technology services among the end-users in Lagos State, Nigeria. African Journal of Science Technology Innovation and Development, 14(1), 272–279. https://doi.org/10.1080/20421338.2020.1835177
Akturan, U., & Tezcan, N. (2012). Mobile banking adoption of the youth market. Marketing Intelligence & Planning, 30(4), 444–459. https://doi.org/10.1108/02634501211231928
Alam, A. F., & Achjari, D. (2024). Analisis Keberlanjutan Penggunaan Robo Advisor Di Indonesia. ABIS Accounting And Business Information Systems Journal, 12(2). Https://Doi.Org/10.22146/Abis.V12i2.96479
Alryalat, M. a. A. (2024). Understanding factors influencing citizens’ intentions to use electronic government (e-Gov) services. International Journal of Electronic Government Research, 20(1), 1–20. https://doi.org/10.4018/ijegr.344421
Appiah, T., & Agblewornu, V. V. (2025). The interplay of perceived benefit, perceived risk, and trust in Fintech adoption: Insights from Sub-Saharan Africa. Heliyon, 11(2), e41992. https://doi.org/10.1016/j.heliyon.2025.e41992
Aprilianti, A. A., Tanzil, N. D., & Pratama, A. (2023). Herding behavior, loss aversion bias, financial literacy, and investment decisions (A study on millennial generation in Indonesia in the digital Era). JASa (Jurnal Akuntansi Audit Dan Sistem Informasi Akuntansi), 7(3), 555–565. https://doi.org/10.36555/jasa.v7i3.2301
Aranyossy, M. R. &. M. (2024). User acceptance of social network-backed cryptocurrency: a unified theory of acceptance and use of technology (UTAUT)-based analysis. ideas.repec.org. https://ideas.repec.org/a/spr/fininn/v10y2024i1d10.1186_s40854-023-00511-4.html
Au, C. H., Ho, K. K. W., Law, K. M. Y., & Chiu, D. K. W. (2024). Critical success factors of users’ continuous intention of adopting cryptocurrency exchanges: LAS-VICT principle. Electronic Markets, 34(1). https://doi.org/10.1007/s12525-024-00721-3
Bastani, S., & Waldenström, D. (2024). AI, Automation, and Taxation. In Edward Elgar Publishing Ebooks (Pp. 354–370). Https://Doi.Org/10.4337/9781839106958.00026
Belanche, D., Casaló, L. V., & Flavián, C. (2019). Artificial Intelligence in FinTech: understanding robo-advisors adoption among customers. Industrial Management & Data Systems, 119(7), 1411–1430. https://doi.org/10.1108/imds-08-2018-0368
Bianchi, M., & Briere, M. (2021). Robo-Advising: Less AI And More XAI? SSRN Electronic Journal. Https://Doi.Org/10.2139/Ssrn.3825110
Changchit, C., Changchit, C., Cutshall, R., Pham, L., & Rao, M. (2023). Understanding The Determinants of Customer Intention To Use Mobile Payment. Journal Of Global Information Management, 31(1), 1–27. Https://Doi.Org/10.4018/Jgim.319740
Chen, C., Chen, I., Tsaur, R., & Chui, L. (2023). User behaviors analysis on OTT platform with an integration of technology acceptance model. Quality & Quantity, 57(6), 5673–5691. https://doi.org/10.1007/s11135-023-01623-w
Chia, H. X. (2019). In Machines We Trust: Are Robo-Advisers More Trustworthy than Human Financial Advisers? Law Technology And Humans, 129–141. Https://Doi.Org/10.5204/Lthj.V1i0.1261
Chomeya, R. (2010). Quality Of Psychology Test Between Likert Scale 5 and 6 Points. Journal Of Social Sciences, 6, 399-403. Https://Doi.Org/10.3844/JSSP.2010.399.403.
Cooper, R. G. (2024). The AI Transformation of Product Innovation. Industrial Marketing Management, 119, 62–74. Https://Doi.Org/10.1016/J.Indmarman.2024.03.008
Dahl, D. W., & Hoeffler, S. (2004). Visualizing the self: exploring the potential benefits and drawbacks for new product evaluation. Journal of Product Innovation Management, 21(4), 259–267. https://doi.org/10.1111/j.0737-6782.2004.00077.x
Data, G. (2024, August 29). Ini Dia Alasan Masyarakat Indonesia Enggan Lakukan Investasi Digital. Goodstats Data. Https://Data.Goodstats.Id/Statistic/Ini-Dia-Alasan-Masyarakat-Indonesia-Enggan-Lakukan-Investasi-Digital-Ynyso
De Araújo Filgueira, Á. J., Lima, A. C., & Castelo, J. S. F. (2022). Adoption intention of photovoltaic solar systems. Revista De Administração Da UFSM, 15(1), 137–157. https://doi.org/10.5902/1983465967199
De Blanes Sebastián, M. G., Guede, J. R. S., Grande, A. A., & Juárez-Varón, D. (2023). Analysis of factors influencing attitude and intention to use electric vehicles for a sustainable future. The Journal of Technology Transfer, 49(4), 1347–1368. https://doi.org/10.1007/s10961-023-10046-6
Diana, N., & Leon, F. M. (2020). Factors Affecting Continuance Intention of FinTech Payment among Millennials in Jakarta. European Journal of Business Management and Research, 5(4). https://doi.org/10.24018/ejbmr.2020.5.4.444
Dianty, M. A., & Faturohman, T. (2023). Factors Influencing The Acceptance of Fintech Lending Platform in Indonesia: An Adoption of Technology Acceptance Model. International Journal Of Monetary Economics And Finance, 16(3/4), 222–230. Https://Doi.Org/10.1504/Ijmef.2023.131899
Feng, Z. (2024). Can GPT Help Improve Robo-Advisory? The Construction of Robo-Advisor For Users With Low Investment Experience Based on LLM. Advances In Economics Management And Political Sciences, 90(1), 26–41. Https://Doi.Org/10.54254/2754-1169/90/20241947
Figà-Talamanca, G., Tanzi, P. M., & D’Urzo, E. (2022a). Robo-advisor acceptance: Do gender and generation matter? PLoS ONE, 17(6), e0269454.
Fisch, J. E., Labouré, M., & Turner, J. A. (2019). The Emergence of The Robo-Advisor. In Oxford University Press Ebooks (Pp. 13–37). Https://Doi.Org/10.1093/Oso/9780198845553.003.0002
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An Introduction to Theory and Research. Addison Wesley Publishing Company.
Gohil, M., Shetty, A., & Akre, S. (2020). Robo-Advisory in India: The Upcoming Game Changer in Indian Financial Markets. MET MANAGEMENT REVIEW, 08(01), 50–57. https://doi.org/10.34047/mmr.2020.8108
Gómez-Hurtado, C., Gálvez-Sánchez, F. J., Prados-Peña, M. B., & Ortíz-Zamora, A. F. (2024). Adoption of e-wallets: trust and perceived risk in Generation Z in Colombia. Spanish Journal of Marketing - ESIC. https://doi.org/10.1108/sjme-01-2024-0017
Hair, J. F. (2010). Multivariate data analysis: A Global Perspective. Prentice Hall.
Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial Least Squares Structural Equation Modeling (PLS-SEM) using R. In Classroom companion: business. https://doi.org/10.1007/978-3-030-80519-7
Hammoud, M. E. H. &. J. (2023). Unveiling The Influence Of Artificial Intelligence And Machine Learning on Financial Markets: A Comprehensive Analysis of AI Applications in Trading, Risk Management, and Financial Operations. Ideas.Repec.Org. Https://Ideas.Repec.Org/A/Gam/Jjrfmx/V16y2023i10p434-D1253685.Html
Haqqi, F. R., & Suzianti, A. (2020). Exploring Risk And Benefit Factors Affecting User Adoption Intention Of Fintech In Indonesia. Edtech Journal, 13–18. Https://Doi.Org/10.1145/3400934.3400939
Hardani, Auliya, N. H., Andriani, H., Fardani, R. A., Ustiawaty, J., Utami, E. F., Sukmana, D. J., & Istiqomah, R. R. (2020). Metode penelitian kualitatif & kuantitatif. CV. Pustaka Ilmu.
Hasan, A. A., & Ariyani, R. (2024, October 13). OJK Perkirakan Transaksi Perdagangan Digital Pada 2023 Tembus Rp 500 Triliun. Tempo. Https://Www.Tempo.Co/Ekonomi/Ojk-Perkirakan-Transaksi-Perdagangan-Digital-Pada-2023-Tembus-Rp-500-Triliun-5710
Hayes, A. (2025, March 11). Do Robo-Advisors Beat The S&P 500? Investopedia. Https://Www.Investopedia.Com/Do-Robo-Advisors-Beat-The-S-And-P-500-7569726
Hong, X., Pan, L., Gong, Y., & Chen, Q. (2023). Robo-advisors and investment intention: A perspective of value-based adoption. Information & Management, 60(6), 103832. https://doi.org/10.1016/j.im.2023.103832
Hoque, T. A. &. M. E. (2022). Moderating Effects Of Financial Cognitive Abilities And Considerations On The Attitude–Intentions Nexus Of Stock Market Participation. Ideas.Repec.Org. Https://Ideas.Repec.Org/A/Gam/Jijfss/V10y2022i1p5-D717568.Html
Hou, J., Li, Y., & Kankham, S. (2023). The Service Attributes Of Robo-Advisors: A Choice-Based Conjoint Analysis. Information Technology And People, 38(1), 338–362. Https://Doi.Org/10.1108/Itp-04-2023-0375
Ivanov, S., Soliman, M., Tuomi, A., Alkathiri, N. A., & Al-Alawi, A. N. (2024). Drivers of generative AI adoption in higher education through the lens of the Theory of Planned Behaviour. Technology in Society, 77, 102521. https://doi.org/10.1016/j.techsoc.2024.102521
Jain, N., & Raman, T. (2022). The interplay of perceived risk, perceive benefit and generation cohort in digital finance adoption. EuroMed Journal of Business, 18(3), 359–379. https://doi.org/10.1108/emjb-09-2021-0132
Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47(2), 263. https://doi.org/10.2307/1914185
Kamleitner, B., & Hoelzl, E. (2009). Cost–Benefit associations and financial behavior. Applied Psychology, 58(3), 435–452. https://doi.org/10.1111/j.1464-0597.2009.00400.x
Kanojia, P., & Lal, M. (2022). Moderation effect of demographic factors in adoption of electronic payments. International Journal of Management Practice, 16(1), 18. https://doi.org/10.1504/ijmp.2023.10052014
Kim, H., Chan, H. C., & Gupta, S. (2005). Value-based Adoption of Mobile Internet: An empirical investigation. Decision Support Systems, 43(1), 111–126. https://doi.org/10.1016/j.dss.2005.05.009
KSEI. (2024). Statistik Pasar modal Indonesia. In www.ksei.co.id. https://www.ksei.co.id/files/Statistik_Publik_Desember_2024_v3.pdf
Kurniasari, F., Utomo, P., & Jimmy, S. Y. (2023). Determinant Factors of Fintech Adoption in Organization using UTAUT Theory Approach. Journal of Business Management Review, 4(2), 092–103. https://doi.org/10.47153/jbmr42.6032023
Kurniawan, A., Liviona, C., Nahriyah, M., Abdillah, N., Atikah, O. L., Delphia, R., & Sakti, Y. N. (2024). Analisis perkembangan wilayah Kabupaten Bekasi dan Kota Bekasi berdasarkan Peraturan Presiden Nomor 60 Tahun 2020. Spatial Review for Sustainable Development, 1(1), 44–57. https://doi.org/10.61511/srsd.v1i1.2024.715
Li, J. (2023). Security implications of AI chatbots in health care. Journal of Medical Internet Research, 25, e47551. https://doi.org/10.2196/47551
Li, J., Zhou, Y., Yu, D., & Liu, C. (2020). Consumers’ purchase intention of new energy vehicles: Do Product-Life-Cycle Policy portfolios matter? Sustainability, 12(5), 1711. https://doi.org/10.3390/su12051711
Liu, J., Chen, X., & Ye, S. (2022). Research on The Development of Robo-Advisor Under The Background Of Fin-Tech. In Proceedings of The 2022 International Conference on Artificial Intelligence, Internet And Digital Economy (ICAID 2022) (Pp. 694–702). Https://Doi.Org/10.2991/978-94-6463-010-7_71
Loutfi, A. A., & Mustafa, G. (2020). Factors Influencing Behavioural Intention Towards Usage Likelihood of Fintech Services Among Bank Users: Evidence from Norway. https://hdl.handle.net/11250/2776896
Lu, K., & Shi, C. (2025). Why do travelers discontinue using integrated ride-hailing platforms? The role of perceived value and perceived risk. Humanities and Social Sciences Communications, 12(1). https://doi.org/10.1057/s41599-025-04683-5
Makkonen, M., Frank, L., Kemppainen, T., & Juujärvi, T. (2022). Gender, age, and generational differences in the use intention of mobile payments and its antecedents. In Lecture notes in information systems and organisation (pp. 87–102). https://doi.org/10.1007/978-3-031-10902-7_7
Malik, A. N. A., & Annuar, S. N. S. (2021). The Effect of Perceived Usefulness, Perceived Ease of Use, Reward, and Perceived Risk toward E-Wallet Usage Intention. In Eurasian studies in business and economics (pp. 115–130). https://doi.org/10.1007/978-3-030-65147-3_8
Marco, M., & Arifin, A. Z. (2024). Perceived benefits and perceived behavioral control toward fintech adoption intention in banking products. JPS (Jurnal Perbankan Syariah), 5(2), 229–246. https://doi.org/10.46367/jps.v5i2.1794
Market Research Indonesia Consulting Firm. (2025, March 16). Digital Wallets & Indonesia Digital Payment Adoption explained. https://marketresearchindonesia.com/insights/articles/digital-wallets-indonesia-digital-payment-adoption-explained#:~:text=Indonesia%20is%20witnessing%20a%20massive%20shift%20toward%20digital,of%20digital%20transactions%20have%20fueled%20this%20rapid%20expansion.
Meilasari-Sugiana, A., Negara, S. D., & Hui, Y. (2022). Financial Technology adoption in Greater Jakarta. https://doi.org/10.1355/9789815011555
Mendorong Pertumbuhan Fintech Untuk Perkuat Ekonomi Digital Indonesia. (N.D.). Https://Sarolangunkab.Go.Id/Artikel/Baca/Mendorong-Pertumbuhan-Fintech-Untuk-Perkuat-Ekonomi-Digital-Indonesia#:~:Text=Mendorong%20Pertumbuhan%20Fintech%20untuk%20Perkuat%20Ekonomi%20Digital%20Indonesia,-RONS&Text=Industri%20fintech%20(Financial%20technology)%20di,Diproyeksikan%20USD130%20miliar%20pada%202025.
Merhi, M., Hone, K., Tarhini, A., & Ameen, N. (2020). An empirical examination of the moderating role of age and gender in consumer mobile banking use: a cross-national, quantitative study. Journal of Enterprise Information Management, 34(4), 1144–1168. https://doi.org/10.1108/jeim-03-2020-0092
Mew, J., & Millan, E. (2021). Mobile wallets: key drivers and deterrents of consumers’ intention to adopt. The International Review of Retail Distribution and Consumer Research, 31(2), 182–210. https://doi.org/10.1080/09593969.2021.1879208
Nassar, A. a. M., Othman, K., & Nizah, M. a. B. M. (2019). The impact of the social influence on ICT adoption: behavioral intention as mediator and age as moderator. International Journal of Academic Research in Business and Social Sciences, 9(11). https://doi.org/10.6007/ijarbss/v9-i11/6620
Nazmi, A. N. A., Lye, C., & Tay, L. (2024). Promoting Robo-Advisor Adoption among B40 in Malaysia through Advisory Transparency and UTAUT Models. Engineering Technology & Applied Science Research, 14(6), 18727–18733. https://doi.org/10.48084/etasr.8289
Nugraha, D. P., Setiawan, B., Nathan, R. J., & Fekete-Farkas, M. (2022). Fintech Adoption Drivers for Innovation for SMES In Indonesia. Journal Of Open Innovation Technology Market And Complexity, 8(4), 208. Https://Doi.Org/10.3390/Joitmc8040208
Nugroho, I. H. D. (2024, October 30). Data Penggunaan AI di Indonesia 2024: Tren dan Statistik. Data Penggunaan AI di Indonesia 2024: Tren dan Statistik. https://dibimbing.id/blog/detail/data-penggunaan-ai-di-indonesia-tren-dan-statistik
Obiora, K. I., & Ozili, P. K. (2024). Comparative analysis of financial inclusion in Nigeria, Sub-Saharan Africa, and the world. Perspectives on Global Development and Technology, 22(3–4), 217–238. https://doi.org/10.1163/15691497-12341659
Olaoye, O. O., Shaddady, A., & Tabash, M. I. (2025). Does Fintech Enhance The Effectiveness of Financial Inclusion to Reduce Income Inequality? Evidence From Sub-Saharan Africa. International Journal Of Emerging Markets. Https://Doi.Org/10.1108/Ijoem-04-2024-0663
Oye, D. (2020). Analysis of Impacts of Operational Risk Management Practices On Banks’ Financial Performance: Study Of Selected Commercial Banks In Nigeria. International Journal Of Finance & Banking Studies (2147-4486), 9(1), 22–35. Https://Doi.Org/10.20525/Ijfbs.V9i1.634
Paramita, E. D., & Cahyadi, E. R. (2024). The Determinants of behavioral intention and use behavior of QRIS as digital Payment Method using Extended UTAUT model. Indonesian Journal of Business and Entrepreneurship. https://doi.org/10.17358/ijbe.10.1.132
Puhle, M. (2019). The Performance And Asset Allocation Of German Robo-Advisors. Society And Economy, 41(3), 331–351. Https://Doi.Org/10.1556/204.2019.41.3.4
Purwanto, H., Yandri, D., & Yoga, M. P. (2022). Perkembangan dan Dampak Financial Technology (Fintech) terhadap Perilaku Manajemen Keuangan di Masyarakat. Kompleksitas Jurnal Ilmiah Manajemen Organisasi dan Bisnis, 11(1), 80–91. Https://Doi.Org/10.56486/Kompleksitas.Vol11no1.220
Ranković, M., Gurgu, E., Martins, O. M., & Vukasović, M. (2023). Artificial Intelligence and The Evolution of Finance: Opportunities, Challenges And Ethical Considerations. Edtech Journal, 3(1), 20–23. Https://Doi.Org/10.18485/Edtech.2023.3.1.2
Ringle, C. M., Wende, S., and Becker, J.-M. 2015. SmartPLS 3. Boenningstedt: SmartPLS GmbH, http://www.smartpls.com.
Riskinanto, A., Kelana, B., & Hilmawan, D. R. (2017). The moderation effect of age on adopting E-Payment technology. Procedia Computer Science, 124, 536–543. https://doi.org/10.1016/j.procs.2017.12.187
Rizkalla, N., Tannady, H., & Bernando, R. (2024). Analysis of the influence of performance expectancy, effort expectancy, social influence, and attitude toward behavior on intention to adopt live.on. Multidisciplinary Reviews, 6, 2023spe017. https://doi.org/10.31893/multirev.2023spe017
Roh, T., Byung, P., & Xiao, S. (2023). Adoption of AI-enabled robo-advisors in fintech: Simultaneous employment of UTAUT and the Theory of Reasoned Action | JECR. Journal of Electronic Commerce Research, 24, 29–47. http://www.jecr.org/node/676
SAM, K. M., CHAN, W. H., CHATWIN, C., UNIVERSITY OF MACAU, UNIVERSITY OF MACAU, & UNIVERSITY OF SUSSEX. (2020). FACTORS AFFECTING THE ADOPTION OF EMBEDDED MOBILE FINANCE FUNCTIONS. In Journal of Information Technology Management: Vol. XXXI (No. 2). https://home.thejitm.org/XXXI-2/article1.pdf
Sarstedt, M., Ringle, C.M., Hair, J.F. (2025). Partial Least Squares Structural Equation Modeling. In: Homburg, C., Klarmann, M., Vomberg, A. (eds) Handbook of Market Research. Springer, Cham. https://doi.org/10.1007/978-3-319-05542-8_15-3
Setyawati, C. Y., & Polar, D. C. (2022). Pengaruh Perceived Usefulness Terhadap Behavior Intention to Use E-Wallet Gopay melalui Mediasi Attitude Toward Using di Kota Ternate. Jurnal Akuntansi Dan Pajak, 22(2), 662. Https://Doi.Org/10.29040/Jap.V22i2.3187
Shaliha, A. I. P., & Marsasi, E. G. (2024). The influence of attitude and perceived risk to optimize intention to adopt based on theory of planned behavior in Generation Z. EKOMBIS REVIEW Jurnal Ilmiah Ekonomi Dan Bisnis, 12(2). https://doi.org/10.37676/ekombis.v12i2.5427
Shen, Z., Wang, Z., Chew, J., Hu, K., & Wang, Y. (2025). Artificial Intelligence Empowering Robo-Advisors: A Data-Driven Wealth Management Model analysis. International Journal of Management Science Research, 8(3), 1–12. https://doi.org/10.53469/ijomsr.2025.08(03).01
Singh, S., & Kumar, A. (2024). Investing in the future: an integrated model for analysing user attitudes towards Robo-advisory services with AI integration. Vilakshan – XIMB Journal of Management. https://doi.org/10.1108/xjm-03-2024-0046
Singhvi, S. (2021). Understanding The Emerging Role And Importance Of Robo-Advisory: A Case Study Approach. In Springer Ebooks (Pp. 37–51). Https://Doi.Org/10.1007/978-981-16-3250-1_3
Spiga, G., Ahmad, S. Z., & Yeoh, W. (2024). Blockchain adoption impact on real estate performance: the mediating role of real estate and blockchain transparency. Business Process Management Journal, 30(6), 1874–1894. https://doi.org/10.1108/bpmj-09-2023-0701
Su, B., Wu, L., Lin, H., & Lin, C. (2023). The Mediating Effect of Herd Behavior and Brand Attitude towards the Impact of Spokesman Credibility, Source Fit, and Online Word-of-Mouth on Purchase Intention. Sustainability, 15(1), 888. https://doi.org/10.3390/su15010888
Subowo, T. (2022). Pengaruh Literasi Keuangan, Kemajuan Teknologi, Persepsi Return dan Risiko terhadap Minat Berinvestasi di Pasar Modal. Fortunate Business Review, 2(1). Https://Journal.Uvers.Ac.Id/Index.Php/Fbr/Article/View/87/48
Suhud, U., Budak, T., & Benk, S. (2019). Antecedents of e-money adoption intention among Indonesian and Turkish consumer. Management Science Letters, 609–616. https://doi.org/10.5267/j.msl.2019.9.019
Tampilan Analisis Adopsi Pengguna Kelompok Usia Muda pada Integrasi Layanan Pembayaran Gopay di Aplikasi Tokopedia Menggunakan Model UTAUT2 & TTF. (n.d.). https://jtiik.ub.ac.id/index.php/jtiik/article/view/8053/1242
Tao, R., Su, C., Xiao, Y., Dai, K., & Khalid, F. (2020). Robo advisors, algorithmic trading and investment management: Wonders of fourth industrial revolution in financial markets. Technological Forecasting and Social Change, 163, 120421. https://doi.org/10.1016/j.techfore.2020.120421
Venkatesh, N., Morris, N., Davis, N., & Davis, N. (2003). User acceptance of information Technology: toward a unified view. MIS Quarterly, 27(3), 425. https://doi.org/10.2307/30036540
Wamba-Taguimdje, S., Wamba, S. F., Kamdjoug, J. R. K., & Wanko, C. E. T. (2020). Influence Of Artificial Intelligence (AI) On Firm Performance: The Business Value Of AI-Based Transformation Projects. Business Process Management Journal, 26(7), 1893–1924. Https://Doi.Org/10.1108/Bpmj-10-2019-0411
Xie, Q., Muralidharan, S., Edwards, S. M., & La Ferle, C. (2023). Unlocking the Power of Non-Fungible Token (NFT) Marketing: How NFT Perceptions Foster Brand Loyalty and Purchase Intention among Millennials and Gen-Z. Journal of Interactive Advertising, 23(4), 356–373. https://doi.org/10.1080/15252019.2023.2258875
Yeh, H., Yu, M., Liu, C., & Huang, C. (2022). Robo-advisor based on unified theory of acceptance and use of technology. Asia Pacific Journal of Marketing and Logistics, 35(4), 962–979. https://doi.org/10.1108/apjml-07-2021-0493
Zefreh, M. M., Edries, B., Esztergár-Kiss, D., & Torok, A. (2023). Intention to use private autonomous vehicles in developed and developing countries: What are the differences among the influential factors, mediators, and moderators? Travel Behaviour and Society, 32, 100592. https://doi.org/10.1016/j.tbs.2023.100592
Zhong, Y., Oh, S., & Moon, H. C. (2021). Service transformation under industry 4.0: Investigating acceptance of facial recognition payment through an extended technology acceptance model. Technology in Society, 64, 101515. https://doi.org/10.1016/j.techsoc.2020.101515
Zuelseptia, S., Rahmiati, R., & Engriani, Y. (2018). The Influence of Perceived Risk and Perceived Ease of Use on Consumerrs Attitude and Online Purchase Intention. First Padang International Conference on Economics Education, Economics, Business and Management, Accounting and Entrepreneurship. https://doi.org/10.2991/piceeba-18.2018.70
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Zidane Ramadhan, Umi Widyastuti, Meta Bara Berutu (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.